Charcoal is a light black residue consisting of carbon, and any remaining ash, obtained by removing water and other volatile constituents from animal and vegetation substances. Charcoal is usually produced by slow pyrolysis, the heating of woodor other substances in the absence of oxygen (see pyrolysis, char and biochar). It is usually an impure form of carbon as it contains ash; however, sugar charcoal is among the purest forms of carbon readily available, particularly if it is not made by heating but by a dehydration reaction with sulfuric acid to minimise introducing new impurities, as impurities can be removed from the sugar in advance. The resulting soft, brittle, lightweight, black, porous material resembles coal.


Historically, production of wood charcoal in districts where there is an abundance of wood dates back to a very ancient period, and generally consists of piling billets of wood on their ends so as to form a conical pile, openings being left at the bottom to admit air, with a central shaft to serve as a flue. The whole pile is covered with turf or moistened clay. The firing is begun at the bottom of the flue, and gradually spreads outwards and upwards. The success of the operation depends upon the rate of the combustion. Under average conditions, 100 parts of wood yield about 60 parts by volume, or 25 parts by weight, of charcoal; small-scale production on the spot often yields only about 50%, large-scale was efficient to about 90% even by the seventeenth century. The operation is so delicate that it was generally left to colliers (professional charcoal burners). They often lived alone in small huts in order to tend their wood piles. For example, in the Harz Mountains of Germany, charcoal burners lived in conical huts called Köten which are still much in evidence today.

The massive production of charcoal (at its height employing hundreds of thousands, mainly in Alpine and neighbouring forests) was a major cause of deforestation, especially in Central Europe. In England, many woods were managed as coppices, which were cut and regrew cyclically, so that a steady supply of charcoal would be available (in principle) forever; complaints (as early as the Stuart period) about shortages may relate to the results of temporary over-exploitation or the impossibility of increasing production to match growing demand. The increasing scarcity of easily harvested wood was a major factor for the switch to the fossil fuel equivalents, mainly coal and brown coal for industrial use.

The use of charcoal as a smelting fuel has been experiencing a resurgence in South America following Brazilian law changes in 2010 to reduce carbon emissions as part of President Lula da Silva’s commitment to make a “green steel”.

The modern process of carbonizing wood, either in small pieces or as sawdust in cast iron retorts, is extensively practiced where wood is scarce, and also for the recovery of valuable byproducts (wood spirit, pyroligneous acid, wood tar), which the process permits. The question of the temperature of the carbonization is important; according to J. Percy, wood becomes brown at 220 °C (428 °F), a deep brown-black after some time at 280 °C (536 °F), and an easily powdered mass at 310 °C (590 °F).Charcoal made at 300°C (572 °F) is brown, soft and friable, and readily inflames at 380 °C (716 °F); made at higher temperatures it is hard and brittle, and does not fire until heated to about 700 °C (1,292 °F).

In Finland and Scandinavia, the charcoal was considered the by-product of wood tar production. The best tar came from pine, thus pinewoods were cut down for tar pyrolysis. The residual charcoal was widely used as substitute for metallurgical coke inblast furnaces for smelting. Tar production led to rapid deforestation: it has been estimated all Finnish forests are younger than 300 years. The end of tar production at the end of the 19th century resulted in rapid re-forestation.

The charcoal briquette was first invented and patented by Ellsworth B. A. Zwoyer of Pennsylvania in 1897 and was produced by the Zwoyer Fuel Company. The process was further popularized by Henry Ford, who used wood and sawdust byproducts from automobile fabrication as a feedstock. Ford Charcoal went on to become the Kingsford Company.

Production methods

Charcoal has been made by various methods. The traditional method in Britain used a clamp. This is essentially a pile of wooden logs (e.g. seasoned oak) leaning against a chimney (logs are placed in a circle). The chimney consists of 4 wooden stakes held up by some rope. The logs are completely covered with soil and straw allowing no air to enter. It must be lit by introducing some burning fuel into the chimney; the logs burn very slowly and transform into charcoal in a period of 5 days’ burning. If the soil covering gets torn (cracked) by the fire, additional soil is placed on the cracks. Once the burn is complete, the chimney is plugged to prevent air from entering.

The last section of the film Le Quattro Volte (2010) gives a good and long, if poetic, documentation of the traditional method of making charcoal.The Arthur Ransome children’s series Swallows and Amazons (particularly the second book Swallowdale) features carefully drawn vignettes of the lives and the techniques of charcoal burners at the start of the 20th century, in the Lake District of the UK.

Charcoal Burner, Bouth Woods

Modern methods use a sealed metal container, as this does not require watching lest fire break through the covering. However, on-site attendance is required. This is often carried out by the last forestry workers to live in working woodland in the western world. There has been a resurgence of this, particularly in the UK. A good example of this is Bulworthy Project where charcoal production supports an experiment in low-impact living and nature conservation.

The properties of the charcoal produced depend on the material charred. The charring temperature is also important. Charcoal contains varying amounts of hydrogen and oxygen as well as ash and other impurities that, together with the structure, determine the properties. The approximate composition of charcoal for gunpowders is sometimes empirically described as C7H4O. To obtain a coal with high purity, source material should be free of non-volatile compounds (sugar and a high charring temperature can be used). After charring, partial oxidation with oxygen or chlorine can reduce hydrogen levels. For activation of charcoal see activated carbon.

Common charcoal is made from peat, coal, wood, coconut shell, or petroleum. “Activated charcoal” is similar to common charcoal, but is made especially for use as a medicine. To make activated charcoal, manufacturers heat common charcoal in the presence of a gas that causes the charcoal to develop lots of internal spaces or “pores.” These pores help activated charcoal “trap” chemicals.


Commercial charcoal is found in either lump, briquette, or extruded forms:

Lump charcoal is made directly from hardwood material and usually produces far less ash than briquettes.
Pillow Shaped Briquettes are made by compressing charcoal, typically made from sawdust and other wood by-products, with a binder and other additives. The binder is usually starch. Some briquettes may also include brown coal (heat source), mineral carbon (heat source), borax, sodium nitrate (ignition aid), limestone (ash-whitening agent), raw sawdust (ignition aid), and other additives.
Hexagonal Sawdust Briquette Charcoal are made by compressing sawdust without binders or additives, making it completely natural. Hexagonal Sawdust Briquette Charcoal is the preferred charcoal in countries like Taiwan, Korea, Middle East, Greece. It has a round hole through the center, with a hexagonal intersection. Mainly for BBQ uses as it does not emit odor, no smoke, little ash, high heat, and long burning hours (exceeding 4 hours).
Extruded charcoal is made by extruding either raw ground wood or carbonized wood into logs without the use of a binder. The heat and pressure of the extruding process hold the charcoal together. If the extrusion is made from raw wood material, the extruded logs are then subsequently carbonized.
Japanese charcoal removes pyroligneous acid during the charcoal making. Therefore when burning, there are almost no stimulating smells or smoke. The charcoal of Japan is classified into three kinds.
White charcoal (Binchōtan) is very hard and has a metallic sound.
Black charcoal
Ogatan is made from hardened sawdust. It is most often used in Izakaya or Yakiniku restaurants.
The characteristics of charcoal products (lump, briquette, or extruded forms) vary widely from product to product. Thus it is a common misconception to stereotype any kind of charcoal, saying which burns hotter or longer etc.

  • Agribank
  • VCCI
  • Super Speed Logistics Jsc
  • Vietcombank
  • Kuehne + Nagel Ltd
  • IFB Logistic
Văn phòng Hà Nội:
Số 18 ngõ 528, đường Bạch Đằng - Phường Bạch Đằng - Quận Hai Bà Trưng - HN
04.39656112 - 0982023618
Địa chỉ Nhà máy:
Thị trấn Sông Mã - Tỉnh Sơn La
Copyright by whitecharcoal.net
Thiết kế website    SEO -  Tất Thành